Antiviral and anticancer research

Projects

Influence of human cytomegalovirus on tumor progression

Infection with human cytomegalovirus (HCMV) is very common in the population. Although the virus does not possess ability to transform normal cells (like classical tumor viruses), infection of already existing tumor cells with HCMV can increase the malignancy of the tumor (so called oncomodulation). Simultaneously, the efficacy of chemotherapeutic drugs is strongly decreased.
In our lab, we investigate the effects of HCMV infection and specific viral genes of HCMV on proliferation, cell cycle, apoptosis and angiogenesis of the tumor cells. It is possible that oncomodulatory effects are also excerted by viruses other than HCMV. Understanding the mechanisms that lead to oncomodulation is crucial for the development of new anti-tumor therapies, using combination of antiviral and antitumoral drugs.

Antiviral therapy

We have developed cell culture models of respiratory viruses and herpes viruses which enable us to test different substances for their antiviral potency. This tool helped us to identify novel substances against e.g. Cytomegalovirus (desferol and sorafenib)

We also found effective substances against emerging highly pathogenic respiratory viruses like SARS-CoV (glycyrrhizin) or avian influenza H5N1 strains (natural substances like flavonoids or polyterpens).

Currently, a panel of 1443 US FDA (Food and Drug administration) approved drugs is tested for antiviral activity against HCMV and measles. For both viruses, we already identified some substances with antiviral activity.

Establishment and maintenance of a drug-resistant cancer cell line collection

Chemotherapy is often limited by development of chemoresistance in tumor cells (failure of therapy). A few commercial bioresource centers are already existing (e.g. NCI-60, JCFR-39, CMT1000), but these cell line collections d